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On the middle convolution

Michael Dettweiler ∗ Stefan Reiter†

October 30, 2018

Abstract

In [9], a purely algebraic analogon of Katz’ middle convolution functor
(see [12]) is given. It is denoted by MCλ. In this paper, we present
a cohomological interpretation of MCλ and find an explicit Riemann-
Hilbert correspondence for this functor. This leads to an algorithm for the
construction of Fuchsian systems corresponding to irreducible rigid local
systems under the Riemann-Hilbert correspondence. Also, we describe the
effect of MCλ on the p-curvatures and find new examples of differential
equations for which the Grothendieck-Katz p-curvature conjecture holds.

1 Introduction

Let D be a complex ordinary differential equation of order n or, equivalently,
a linear system of differential equations of rank n. Let T = {t1, . . . , tr} ⊆ C

denote the set of finite singularities of D and let γ be a closed path in X = C\T.
Analytic continuation of a fundamental matrix F of D along γ transforms F
into F ·A, with A ∈ GLn(C) uniquely determined. One calls A the monodromy
matrix of D with respect to γ. In other words, if F denotes the local system on
X, formed by the solutions of D, then A describes the monodromy of F along
γ.

Since Riemann’s investigations on the hypergeometric equations ([16]), the
use of monodromy is one of the most powerful tools in the investigation of in-
tegrable differential equations.

It is a basic fact, already used by Riemann, that the solutions of the hy-
pergeometric differential equations give rise to a physically rigid local system,
see [12], Introduction. This means essentially, that the global behaviour of the
solutions under analytic continuation is determined by the local behaviour at
the singularities (including ∞).

∗The first author gratefully acknowledges financial support from the Deutsche Forschungs-
gemeinschaft DFG.

†The second author gratefully acknowledges financial support from the Research Training
Network (Galois Theory and Explicit Methods in Arithmetic) of the European Community.
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A description of all irreducible and physically rigid local systems on the
punctured affine line was given by Katz [12]. The main tool herefore is a mid-
dle convolution functor on the category of perverse sheaves, loc. cit., Chap.
5. This functor is denoted by MCχ, for χ a one-dimensional representation
of π1(Gm). It preserves important properties of local systems like the index of
rigidity and irreducibility, but in general, MCχ changes the rank and the mon-
odromy group. As an application, Katz shows that any irreducible rigid local
system on the punctured affine line can be obtained from a one-dimensional
local system by applying iteratively a suitable sequence of middle convolutions
MCχi

and scalar multiplications, loc. cit., Chap. 6. Since the effect ofMCχi
on

the local monodromy can be determined via Laumon’s theory of l-adic Fourier
transform, this leads to an existence algorithm for rigid local systems, loc. cit.,
Section 6.4.

In [9], the authors give a a purely algebraic analogon of the functor MCχ

(the construction is reviewed in Section 2). This analogous functor is a functor
of the category Mod(K[Fr]) of modules of the free group Fr on r generators to
itself. It depends on a scalar λ ∈ C× and is denoted by MCλ.

One has the equivalence between Mod(C[Fr ]) ∼= Mod(C[π1(X, x0)]) and the
category LocSys(X) of local systems on X, see Section 4.1. Then, MCλ trans-
lates into a functor of the category of local systems on the r-punctured complex
affine line X to itself, sending a local system F to MCλ(F), see Section 4.2. It
follows from the results of [9] that MCλ (viewed as a functor on the category of
local systems on X) has analogous properties as Katz’ functor MCχ, where χ
is the representation, sending the standard generator of π1(Gm(C)) to λ. This
leads to a new and elementary proof of Katz’ existence algorithm for rigid local
systems, see [9], Chap. 4. Similar results are obtained in [19].

It is the aim of this paper to give answers to the following problems:

Problem 1: Give a cohomological interpretation of MCλ(F), explaining the
formal similarity between MCλ and Katz’ functor MCχ.

By the work of Deligne, it is known that the category of complex local sys-
tems on X = C\T is equivalent to the category of ordinary complex differential
equations with polynomial coefficients having only regular singularities at the
missing points (including ∞) and no singularities in X, see [8]. This equivalence
is called the Riemann-Hilbert correspondence. This leads to

Problem 2: Given a differential system having only regular singularities and
whose local system formed by its solutions is F , find a differential system having
only regular singularities such that the local system of its solutions is MCλ(F).

As it turns out both problems are closely related to the cohomology of the
locally trivial fibration p2 : E → X, defined below. The first one is related to
the singular cohomology and second one to the de Rham cohomology of p2.
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Motivated by Katz’ description of MCχ(F) in [12], Chap. 5.1, we give a
solution to Problem (1) in Section 4. For this, let X = C \ T be as above,

E = {(x, y) ∈ C2 | x, y 6= ti, i = 1, . . . , r, x 6= y},

pi : E → X, i = 1, 2, be the i-th projection,

q : E → C×, (x, y) 7→ y − x,

j : E → P1(C) × X the tautological inclusion and p̄2 : P1(C) × X → X the
(second) projection onto X. Moreover, let Lλ denote the Kummer sheaf as-
sociated to the representation, which sends a generator of π1(C

×) to λ (see
Definition 4.1). The following theorem is proved in Section 4.3, using singular
sheaf cohomology (see Theorem 4.4):

Theorem 1.1 Let F be a local system on X and λ ∈ C× \ 1. Then MCλ(F)
is isomorphic to the higher direct image sheaf R1(p̄2)∗(j∗(p

∗
1(F)⊗ q∗(Lλ))).

The idea of the proof is to relate the construction of MCλ to the group
(resp. singular) cohomology of the locally trivial fibration p2 : E → X, where
one can explicitly work with crossed homomorphisms. We do not use the stan-
dard base but a twisted base which arises from the use of commutators, also
called Pochhammer contours. The Pochhammer contours are crucial in the
further investigation of the convolution in terms of Fuchsian systems (see the
Theorem 1.2 below and Remark 6.3). Translating Theorem 1.1 into the lan-
guage of perverse sheaves, one rediscovers Katz’ original construction, see [12],
5.1.7.

In Section 6 we consider Problem (2): In [9], Appendix A, an additive version
of Katz’ functor is defined. It depends on a scalar µ ∈ C and is denoted by mcµ.
By definition, mcµ is nothing else then a transformation of tuples of matrices

(a1, . . . , ar) ∈ (Cn×n)r 7→ mcµ(a1, . . . , ar) ∈ (Cm×m)r.

Any choice of elements t1, . . . , tr ∈ C, together with a tuple of matrices
a := (a1, . . . , ar) ∈ (Cn×n)r, yields a Fuchsian system

Da : Y ′ =

r∑

i=1

ai
x− ti

Y.

Then, mcµ translates into a transformation of Fuchsian systems, sending Da to
Dmcµ(a). This transformation will be called the middle convolution of Fuchsian
systems. The tuple of monodromy generators ofDa will be denoted by Mon(Da)
(see Section 5.2). One obtains the following result, see Theorem 6.8:
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Theorem 1.2 (Riemann-Hilbert correspondence for MCλ) Let µ ∈ C \Z, λ =
e2πiµ and a := (a1, . . . , ar), ai ∈ Cn×n, such that Mon(Da) = (A1, . . . , Ar) ∈
GLn(C)

r. Assume that

rk(ai) = rk(Ai − 1), rk(a1 + · · ·+ ar + µ) = rk(λ ·A1 · · ·Ar − 1)

and that 〈A1, . . . , Ar〉 generates an irreducible subgroup of GLn(C) such that
at least two elements Ai are 6= 1. Then

Mon(Dmcµ−1(a)) =MCλ(Mon(Da)).

Let Fa (resp. Fmcµ−1(a)) denote the local system, formed by the solutions
of Da (resp. Dmcµ−1(a)). Since Mon(Da) (resp. Mon(Dmcµ−1(a))) describes
the monodromy of the local system Fa (resp. Fmcµ−1(a)) (see Remark 5.3),
Theorem 1.2 yields

Fmcµ−1(a)
∼=MCλ(Fa).

Thus we have obtained the Riemann-Hilbert correspondence (Problem 2) under
the assumptions of Theorem 1.2. These assumptions are rather mild and can
be further weakened (see the remark following Theorem 6.8).

The main idea of the proof of Theorem 1.2 is to use Euler transforma-
tions, in order to construct a suitable period matrix Iµ, describing the pair-
ing between the homology and the de Rham cohomology with coefficients in
(p∗1(Fa) ⊗ q∗(Lλ))|X(y0), resp. (p∗1(Fa) ⊗ q∗(Lλ))

∨|X(y0), where X(y0) denotes
the fibre of p2 : E → X over y0. The columns of Iµ are solutions of a Fuch-
sian system Dcµ(a) (called the convolution of Da with µ) such that the middle
convolution Dmcµ(a) is a factor system of Dcµ(a). The rows of Iµ have an inter-
pretation in terms of crossed homomorphisms (already used in Section 4) which
makes it possible to compute the monodromy of Dcµ(a) and Dmcµ(a).

Finally, we give some applications of our methods (Section 7): From The-
orem 1.2, one obtains an algorithm for the construction of Fuchsian systems
corresponding to irreducible rigid local systems under the Riemann-Hilbert cor-
respondence, see Section 7.1. As a byproduct, one obtains integral expressions
for the solutions of these Fuchsian systems. Compare to the work of Haraoka
and Yokoyama ([10], [21]) who use a different approach (in the case of semisimple
monodromy) to obtain integral expression of such solutions.

Then we apply Theorem 1.2 to the construction problem of differential sys-
tems which arise from geometry: These are differential systems which arise from
iterated extensions of subfactors of Gauß-Manin connections (see Section 7.2 for
the definition). These differential systems have many favorable properties. For
example, under some additional assumptions (the connectivity of motivic Galois
groups), such a system satisfies the Grothendieck-Katz p-curvature conjecture
which makes it possible to construct the Lie algebra of its differential Galois
group from its p-curvatures, see André [3], Theorem 0.7.1.

Using results of André [1], one obtains the following result (Theorem 7.1):
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Theorem 1.3 Let K be a number field, a = (a1, . . . , ar), ai ∈ Kn×n, µ ∈ Q,
such that the conditions of Theorem 1.2 hold for Da. If Da is arising from
geometry, then Dmcµ(a) is arising from geometry.

This makes it possible to construct explicitly a large number of differential
systems which arise from geometry. One could start from any differential system
with finite monodromy (which automatically arises from geometry) and apply
the convolution mcµ, µ ∈ Q, to it. In Section 7.2, we consider examples which
are derived from Lamé equations with finite monodromy, related to the work
of Baldassari [4] and Beukers and van der Waall [5], [18]. This leads to new
(non-rigid) examples of differential systems for which the Grothendieck-Katz
p-curvature conjecture is true, see Corollary 7.11. See Katz [12], Chap. 9,
for a proof of the Grothendieck p-curvature conjecture for Fuchsian systems
corresponding to irreducible rigid local systems.

As another application, we investigate the effect of the convolution on the
p-curvature (p a prime) of a Fuchsian system defined over Q. One obtains a
simple formula for the computation of the p-curvature matrices (Lemma 7.8)
and the following result, see Section 7.3 for definitions and Theorem 7.9:

Theorem 1.4 Let K be a number field and p a prime of K lying over p. Let
µ ∈ Q and a = (a1, . . . , ar), ai ∈ Kn×n, such that the p-curvature matrix a(p) of

Da satisfies a(p)
k
= 0. Then the p-curvature matrixmcµ(a(p)) of the convoluted

Fuchsian system Dmcµ(a) satisfies mcµ(a(p))
k+2 = 0.

The crucial observation here is, that the convolution Dcµ(a) is a differential
system in Okubo normal form (see Section 7.3 for definition). For these systems
there exists a closed formula for the computation of the p-curvature matrices
(Lemma 7.8). Theorem 1.4 is interesting in view of the Bombieri-Dwork conjec-
ture which relates the nilpotence of the p-curvatures to the geometric nature of
a differential equation, see Section 7.3. Also, information on the p-adic radius
of solvability is encoded in the nilpotence degree of the p-curvatures, see [1],
Chap. 4.

The authors thank Y. André and D. Bertrand for valuable conversations and
P. Deligne for suggesting the use of crossed homomorphisms for a geometric
interpretation of MCλ.

The second author wants to thank the Department of Mathematics of the
University of Paris 6 (Jussieu) - especially Y. Andre and D. Bertrand - and
the department of Mathematics of the University Toulouse II (G.R.I.M.M.) -
especially the group ALGO - for their hospitality.

2 Definition and properties of the middle con-

volution functor MCλ

In this section, we recall the algebraic construction of the multiplicative version
of the convolution functor defined in [9]. We actually consider a slight modifi-
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cation of the multiplicative version of the convolution. This modification is just
of formal nature and due to the topological setup used in the later sections.

We will use the following notations and conventions throughout the paper:
Let K be a field and G a group. The category of finite dimensional left-G-
modules is denoted by Mod(K[G]). Mostly, we do not distinguish notationally
between an element of Mod(K[G]) and its underlying vector space. Let V be
an element Mod(K[G]) corresponding to a representation ρ : G → GL(V ) and
W a K vector space such that one has a perfect pairing

<,>:W × V → K.

Then W turns into a G-module, where g acts via the unique linear transforma-
tion ρ∨(g) such that < ρ∨(g)w, ρ(g)v >=< w, v > for all w ∈ W and all v ∈ V.
We refer to W as the dual module of V with respect to <,> and often denote it
V ∨. If for g ∈ G, the linear transformation ρ(g) is a given element A ∈ GL(V ),
then we write A∨ ∈ GL(W ) for ρ∨(g).

2.1 Definition of MCλ

Let Fr denote the free group on r generators f1, . . . , fr. An element in Mod(K[Fr])
is viewed as a pair (A, V ), where V is a vector space overK andA = (A1, . . . , Ar)
is an element of GL(V )r such that fi acts on V via Ai, i = 1, . . . , r. For (A, V ) ∈
Mod(K[Fr]), whereA = (A1, . . . , Ar) ∈ GL(V )r, and λ ∈ K× one can construct
an element (Cλ(A), V r) ∈ Mod(K[Fr]), Cλ(A) = (B1, . . . , Br) ∈ GL(V r)r, as
follows: For k = 1, . . . , r, Bk maps a vector (v1, . . . , vr)

tr ∈ V r to




1 0 . . . 0
. . .

1
λ(A1 − 1) . . . λ(Ak−1 − 1) λAk (Ak+1 − 1) . . . (Ar − 1)

1
. . .

0 . . . 0 1







v1
...

...

...

vr




.

We set Cλ(A) := (B1, . . . , Br). There are the following 〈B1, . . . , Br〉-invariant
subspaces of V r :
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Kk =




0
...
0

ker(Ak − 1)
0
...
0




(k-th entry), k = 1, . . . , r,

and
L = ∩r

k=1 ker(Bk − 1) = ker(B1 · · ·Br − 1).

Let K := ⊕r
i=1Ki.

If λ 6= 1, then

L = 〈




A2 · · ·Arv
A3 · · ·Arv

...
v


 | v ∈ ker(λ ·A1 · · ·Ar − 1)〉.

and
K + L = K ⊕ L.

Definition 2.1 Let V = (A, V ) ∈ Mod(K[Fr]).
i) We call the K[Fr]-module Cλ(V ) := (Cλ(A), V r) the convolution of V

with λ.
ii) Let MCλ(A) := (B̃1, . . . , B̃r) ∈ GL(V r/(K + L))r, where B̃k is in-

duced by the action of Bk on V r/(K + L). The K[Fr]-module MCλ(V ) :=
(MCλ(A), V r/(K+L)) is called the middle convolution of (A1, . . . , Ar) with λ.

Remark: In [9], we use the same construction, with the difference that the k-th
block row of Bk is

((A1 − 1), . . . , (Ak−1 − 1), λAk, λ(Ak+1 − 1), . . . , λ(Ar − 1)).

2.2 Properties of MCλ

Let V → V ′ be a morphism of Fr-modules. This clearly induces a morphism
Cλ(V ) → Cλ(V

′). Since the subspaces K and L of Cλ(V ) are mapped to
their corresponding subspaces K′ and L′ of Cλ(V

′) this induces a morphism
MCλ(V ) → MCλ(V

′). The following proposition is easy to prove, compare to
[9], Proposition 2.6 and Lemma 2.8:

Proposition 2.2 Let λ ∈ K×. The transformation V 7→MCλ(V ) (resp. V 7→
Cλ(V )) is a covariant, end-exact, functor of Mod(K[Fr]) to itself.
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Definition 2.3 Let V = (A, V ) ∈ Mod(K[Fr]), where A = (A1, . . . , Ar) ∈
GL(V )r. We say that V satisfies (∗) if

⋂

j 6=i

ker(Aj − 1) ∩ ker(τAi − 1) = 0, i = 1, . . . , r, ∀τ ∈ K×.

Let Ui(τ) :=
∑

j 6=i im(Aj − 1) + im(τAi − 1), i = 1, . . . , r, τ ∈ K×. We say
that V satisfies (∗∗) if

dim(Ui(τ)) = dim(V ), i = 1, . . . , r, ∀τ ∈ K×.

Remark: The conditions (∗) and (∗∗) say, that V has no 1-dimensional factors
and/or submodules with the property that only one (or none) of the Ai act
non-trivially.

Theorem 2.4 Let V = (A, V ) ∈ Mod(K[Fr]), where A = (A1, . . . , Ar) ∈
GL(V )r and λ ∈ K×.

i) If λ 6= 1, then

dim(MCλ(V )) =

r∑

k=1

rk(Ak − 1)− (dim(V )− rk(λ · A1 . . . Ar − 1)).

ii) If λ1, λ2 ∈ K× such that λ1λ2 = λ and (∗) and (∗∗) hold for V, then

MCλ2
MCλ1

(V ) ∼=MCλ(V ).

iii) Under the assumptions of ii), if V is irreducible, then MCλ(V ) is irre-
ducible.

iv) Let Br = 〈Q1, . . . , Qr−1〉 be the abstract Artin braid group, where the
generators Q1, . . . , Qr−1 of Br act in the following way on tuples (g1, . . . , gr) ∈
Gr (where G is a group):

(1) Qi(g1, . . . , gr) = (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gr), i = 1, . . . , r − 1.

For any Q ∈ Br there exists a B ∈ GL(V r/(K + L)) such that

MCλ(Q(A)) = Q(MCλ(A))B ,

where B acts via component-wise conjugation.

v) Let K = C, λ ∈ C be a root of unity and MCλ(A) = (B̃1, . . . , B̃r).
If 〈A1, . . . , Ar〉 respects an hermitean form, then 〈B̃1, . . . , B̃r〉 respects an her-
mitean form.

vi) Let the characteristic ofK be different from 2 andMC−1(A) = (B̃1, . . . , B̃r).
If 〈A1, . . . , Ar〉 respects an orthogonal (resp. symplectic) form, then 〈B̃1, . . . , B̃r〉
respects a symplectic (resp. orthogonal) form.
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Proof: i)-iv) follow analogously to [9], Lemma 2.7, Lemma A.4, Theorem 3.5,
Corollary 3.6 and Theorem 5.1 (in this order). The claims v) and vi) follow
from Lemma 2.5 below. ✷

Remark: The Jordan canonical forms of B̃k can be computed as in [12], Chap.
6 (using [9], Lemma 4.1).

Lemma 2.5 Let A = (A1, . . . , Ar), Ak ∈ GLn(K), λ ∈ K× and Cλ(A) =
(B1, . . . , Bk). Let G be an invariant form under Ai, i.e. Atr

i GAi = G, i =
1, . . . , r. Then

Btr
k HBk = H, k = 1, . . . , r,

where
Hi,i = Gλ1/2(A−1

i − 1)(Ai − λ−1)

and
Hi,j = Gλ−1/2(A−1

i − 1)(Aj − 1), if i < j,

Hi,j = Gλ1/2(A−1
i − 1)(Aj − 1), if i > j.

3 The underlying fibration and its cohomology

We fix a finite set T := {t1, . . . , tr} ⊆ C such that ti 6= tj for i 6= j, and set
X := C \ T. Let W be a topological space and I := [0, 1]. A path in W is a
continuous map γ : I → W. If γ1, γ2 are paths in W such that the endpoint of
γ2 coincides with the initial point of γ1, then their product is denoted by γ1γ2.
If γ is a closed path in W with initial point w0, then γ ∈ π1(W,w0) will also
denote the corresponding homotopy class.

3.1 The underlying fibration

In this subsection we study a fibration whose cohomology will lead to the ge-
ometric interpretation of Cλ and MCλ in Subsection 4.3. The contents of this
section are well known, compare to [6], Chap. 1, and [19].

For n ∈ N, consider the configuration space

On := {P ⊆ C | |P | = n}

of subsets of C of cardinality equal to r. Let further

On := {(p1, . . . , pn) ∈ Cn | i 6= j ⇒ pi 6= pj}.

Since the map
On → On, (p1, . . . , pn) 7→ {p1, . . . , pn},

is an unramified covering map (where On is equipped with the obvious topol-
ogy), we will consider Bn := π1(O

n, (b1, . . . , bn)) as a subgroup of Bn := π1(O
n,

{b1, . . . , bn}) via covering theory.
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It is well known that the fundamental group Bn is isomorphic to the abstract
Artin braid group, i.e., it has a presentation on n− 1 generators Q1, . . . , Qn−1

subject to the braid relations

QiQj = QjQi if |i− j| > 1,

QiQi+1Qi = Qi+1QiQi+1 for i = 1, . . . , n− 2.

The group Bn is isomorphic to the (abstract) pure Artin braid group and gen-
erated by the elements

Qi,j := (Q2
i )

Q−1

i+1
···Q−1

j−1 = (Q2
j−1)

Qj−2···Qi ,

where 1 ≤ i < j ≤ n.

Let now n = r + 2. We set γi := Q1,i+1, i = 1, . . . , r + 1, and δk :=
Qk+1,r+2, k = 1, . . . , r. Using the braid relations, one can easily see that for
k = 1, . . . , r, the following formula holds:

(δkγ1, . . . ,
δkγr+1) = (γ1, . . . , γk−1, γ

γr+1

k , γ
[γk,γr+1]
k+1 , . . . , γ[γk,γr+1]

r , γ
γkγr+1

r+1 ) ,

where [γk, γr+1] = γ−1
k γ−1

r+1γkγr+1 and δkγ1 = δkγδ
−1
k , see also [6], 1.8.3, and

[19].

Let T = {t1, . . . , tr} ⊆ C, X := C \ T and

E := {(x, y) ∈ C2 | x, y 6= ti, i = 1, . . . , r, x 6= y}.

The second projection p2 : E → X is a locally trivial fibration. The fibre over
y is denoted by X(y0) and is via the first projection identified with X \ {y0}.
One has a commutative diagram

E
p2
−→ X

↓ ↓

Or+2 p
−→ Or+1

,

where p(p1, . . . , pr+2) := (p2, . . . , pr+2) and the first (resp. second) vertical
arrow is given by (x, y) 7→ (x, t1, . . . , tr, y) (resp. y 7→ (t1, . . . , tr, y)).

The long exact sequences of homotopy groups, associated to locally trivial
fibrations, lead then to a commutative diagram

1 → π1(X(y0), x0) → π1(E, (x0, y0)) → π1(X, y0) → 1
↓ ↓ ↓

1 → π1(Fr, (x0, t1, . . . , y0))) → Br+2 → Br+1 → 1
,

where Br+2 = π1(O
r+2, (x0, t1, . . . , tr, y0)), Br+1 = π1(O

r+1, (t1, . . . , tr, y0))
and Fr denotes the the fibre over (t1, . . . , tr, y0). It is well known, that the rows
are split exact sequences and the vertical arrows are injective, see [6]. Moreover,
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one can check that π1(Fr, (x0, t1, . . . , tr, y0))) is generated by γ1, . . . , γr+1 and
that the image of π1(X, y0) in Br+1 is generated by δ1, , . . . , δr.

We define α1, . . . , αr+1 ∈ π1(X(y0), x0) (resp. β1, . . . , βr ∈ π1(X, y0)) to be
the inverse images of γ1, . . . , γr+1 (resp. δ1, . . . , δr) under the first (resp. third)
vertical arrow. Thus one deduces that for k = 1, . . . , r the following formula
holds:

(βkα1, . . . ,
βkαr+1) = (α1, . . . , αk−1, α

αr+1

k , α
[αk,αr+1]
k+1 , . . . , α[αk,αr+1]

r , α
αkαr+1

r+1 ).

3.2 Group cohomology of the fibration

If G is a group and ρ→ GL(V ) is a representation, then we define the cohomol-
ogy of G with values in the module V to be H1(G, V ) := C1(G, V )/B1(G, V ),
where

C1(G, V ) := {(δ : G→ V ) | δ(gg′) = δ(g′) + ρ(g′)−1δ(g), ∀g, g′ ∈ G}

is the vector space of crossed homomorphisms and

B1(G, V ) = {(δ : G→ V ) | ∃v ∈ V, δ(g) = v − ρ(g)−1v, ∀g ∈ G}

is the subspace of exact crossed homomorphisms.

Let V be a π1(X, x0)-module, where αi acts via Ai ∈ GL(V ), i = 1, . . . , r.
Let λ ∈ C, Π := π1(X(y0), x0) = 〈α1, . . . , αr+1〉, and Vλ be the Π-module,
whose underlying vectorspace is V and where α1, . . . , αr act via Ai ∈ GL(V )
and αr+1 acts via λ. The underlying representation is denoted by ρλ.

Definition 3.1 The linear map

τ : C1(Π, Vλ) → (Vλ)
r, δ 7→ (δ([αr+1, α1]), . . . , δ([αr+1, αr]))

tr

is called the twisted evaluation map.

Lemma 3.2 If λ 6= 1, then the kernel of the twisted evaluation map τ :
C1(Π, Vλ) → V r

λ is B1(Π, Vλ).

Proof: The crossed homomorphism relation implies

δ([αr+1, αi]) = (1− λ−1)δ(αi)− (1−A−1
i )δ(αr+1).

So, if δ([αr+1, αi]) = 0 for i = 1, . . . , r, then

δ(αi) =
1

1− λ−1
(1 −A−1

i )δ(αr+1), i = 1, . . . , r.

An easy induction shows that

δ(γ) =
1

1− λ−1
(1− ρλ(γ)

−1)δ(αr+1),
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so δ is exact. On the other hand, any vector in Vλ occurs as δ(αr+1) for some
δ ∈ C1(Π, Vλ). Therefore, the claim follows from dimension reasons. ✷

Since

(βkα1, . . . ,
βkαr+1) = (α1, . . . , αk−1, α

αr+1

k , α
[αk,αr+1]
k+1 , . . . , α[αk,αr+1]

r , α
αkαr+1

r+1 )

and ρλ(αr+1) = λ, the map which sends δ to δ◦β−1
k is contained in GL(C1(Π, Vλ)).

Thus, by Lemma 3.2,the association

β[δ] := [δ ◦ β−1]

imposes the structure of a π1(X, y0)-module on H1(Π, Vλ) and, by the same
arguments, on H1(Π, V ∨

λ ).

Consider the pairing

(V ∨
λ )r×V r

λ → C, ((w1, . . . , wr), (v1, . . . , vr)
tr) 7→< w1, v1 > + · · ·+ < wr, vr > .

Let Cλ(A) = (B1, . . . , Br) and C̃λ(Vλ) the π1(X, y0)-module whose underlying
vector space is V r

λ , on which βk acts via Bk. Let further C̃λ(Vλ)
∨ denote the

dual module with respect to the above pairing.

Theorem 3.3 The linear map

H1(Π, V ∨
λ ) → C̃λ(Vλ)

∨, [δ] 7→ τ(δ)

is an isomorphism of π1(X, y0)-modules.

Proof: It suffices to show that

τ(β−1
k (δ)) = (δ([βkαr+1,

βkα1], . . . , δ([
βkαr+1,

βkαr]))

= (δ([αr+1, α1], . . . , δ([αr+1, αr])) ◦Bk(2)

= β−1
k (τ(δ)),

for all δ ∈ C1(Π, V ∨
λ ) and k = 1, . . . , r; where the first and the last equality hold

by definition. Equality (2) follows from an elementary but tedious computation,
using the crossed homomorphism relation and the action of βk on (α1, . . . , αr).

✷

4 Convolution of local systems

It is the aim of this section to give an interpretation of the multiplicative version
of the convolution in terms of the cohomology of local systems on the punctured
sphere.
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4.1 Local systems

Let W be a connected topological manifold. A (complex) local system of rank
n on W is a sheaf F of complex vector spaces which is locally isomorphic to the
constant sheaf Cn. The category of local systems onW is denoted by LocSys(W ).
It is closed under tensor product and taking duals. The dual local system of a
local system F on W is denoted by F∨. The stalk of F at w0 ∈ W is denoted
by Fw0

.
If γ is a closed path in W starting at w0, then there exists a unique linear
transformation Mon(γ) such that the stalk γ∗(F)1 is canonically isomorphic to
Mon(γ) · γ∗(F)0. Composition of paths gives rise to the monodromy represen-
tation (see [8]):

Mon := Mon(F) : π1(W,w0) → GL(Fw0
).

It is well known, that the functor

LocSys(W ) → Mod(C[π1(W,wo)]), F 7→ Fwo

is an equivalence of categories, see [8], Corollaire 1.4.

4.2 The middle convolution functor MCλ for local systems

Definition 4.1 Let γ be a closed path in C× which has initial point x0 and
encircles 0 once in counterclockwise direction, λ ∈ C× and

χ : π1(C
×, x0) → GL(C), γ 7→ λ.

The local system on C× corresponding to the (module associated to the) homo-
morphism χ is called the Kummer sheaf associated to λ and y0 and is denoted
by Lλ.

Let α1, . . . , αr+1 (resp. β1, . . . , βr) be as in the previous subsections and F
be the local system associated to the representation

ρ : π1(X, x0) → GL(V ), αi 7→ Ai, i = 1, . . . , r.

For λ ∈ C, let Cλ(A) = (B1, . . . , Br) ∈ GL(V r)r andMCλ(A) = (B̃1, . . . , B̃r) ∈
GL(V r/(K+ L))r . We define Cλ(F) to be the local system associated to

π1(X, x0) → GL(V r), βi 7→ Bi, i = 1, . . . , r.

Similarly, let MCλ(F) be the local system associated to

π1(X, x0) → GL(V r/(K + L)), βi 7→ B̃i, i = 1, . . . , r.

Proposition 4.2 The local system Cλ(F), resp. MCλ(F), is canonically iso-
morphic to the local system corresponding to the representation

π1(X, x0) → GL(V ), αi 7→ Bi, i = 1, . . . , r,

resp.
π1(X, x0) → GL(V ), αi 7→ B̃i, i = 1, . . . , r.

13



Proof: There exists, up to homotopy, a unique path γ in X with initial point
y0 and endpoint x0 such that βi = γ−1αiγ for i = 1, . . . , r. This path induces
canonical isomorphisms

Cλ(F)|y0
→ Cλ(F)|x0

,

resp.
MCλ(F)|y0

→MCλ(F)|x0
,

which are compatible with the induced isomorphism of fundamental groups

π1(X, y0) → π1(X, x0), βi 7→ αi = γαiγ
−1

and the action of the two fundamental groups on their respective fibers. ✷

In view of Proposition 2.2 one obtains covariant, end-exact, functors

Cλ : LocSys(X) → LocSys(X), F 7→ Cλ(F)

and
MCλ : LocSys(X) → LocSys(X), F 7→MCλ(F).

Moreover, all the properties of MCλ, as given in Theorem 2.4, immediately
translate into the language of local systems.

The following definition is justified by the results of the next subsection:

Definition 4.3 The local system Cλ(F) (resp. MCλ(F)) is called the convo-
lution (resp. middle convolution) of F with Lλ.

4.3 Cohomological interpretation of MCλ

Let S a sheaf of complex vector spaces on W. An i-cochain ψ is a map which
associates to any i-chain σ : ∆i →W an element ψ(σ) ∈ C. The set of i-cochains
is denoted by Ci(W ). Consider the (injective and torsionless, see [20]) resolution
of the constant sheaf C on W via cochains

0 → C → C0(W ) → C1(W ) → C2(W ) → . . .

and let Hi(W,S) := Hi(Γ(C∗ ⊗ S)).

Let p : W1 → W2 be a continuous map of topological spaces and S a sheaf
on W1. The sheaf associated to the presheaf

U 7→ SU := Hi(p−1(U),S|U ) (U open in W2)

is denoted by Rip∗(S) (it is well known that Rip∗ can be viewed as the i-th
higher direct image functor of p∗).

Let
E = {(x, y) ∈ C2 | x, y 6= ti, i = 1, . . . , r, x 6= y},
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pi : E → X, i = 1, 2, be the i-th projection,

q : E → C×, (x, y) 7→ y − x,

j : E → P1(C) × X the tautological inclusion and p̄2 : P1(C) × X → X the
(second) projection onto X.

Theorem 4.4 Let F be a local system on X, λ ∈ C× \ 1 and Lλ the Kummer
sheaf associated to λ. Then

MCλ(F) ∼= R1(p̄2)∗(j∗(p
∗
1(F)⊗ q∗(Lλ))).

Proof: Let F be the local system associated to a representation

π1(X, x0) → GL(V ), αi 7→ Ai, i = 1, . . . , r,

where αi is as in Section 4.1. Let G := p∗1(F) ⊗ q∗(Lλ) and Gy0
the restriction

of G to X(y0) (thus Gy0
corresponds to the Π-module Vλ of the last section).

Let ψ ∈ C1(X(y0),G
∨
y0
) be a closed cochain and σ1, σ2 closed paths in X(y0),

based at x0. By definition,

ψ(σ1σ2)|0 = ψ(σ2)|0 +Mon(σ2)
−1ψ(σ1)|0.

This induces an isomorphism

H : H1(X(y0),G
∨
y0
) → H1(Π, V ∨

λ ), [ψ] 7→ [(σ 7→ ψ(σ)|0)].

Since p2 : E → X is a locally trivial fibration, R1(p2)∗(G
∨) is a local system.

By construction, the monodromy action of βk ∈ π1(X, y0) on R
1(p2)∗(G

∨)|y0
=

H1(X(y0),Gy0
) is the one which is induced by sending αi to

β−1

k αi. This yields a
canonical isomorphism of π1(X, y0)-modules betweenH1(X(y0),G

∨
y0
) andH1(Π,

V ∨
λ ). Thus, by Theorem 3.3, one has a canonical isomorphism

R1(p2)∗(G
∨) ∼= Cλ(F)∨.(3)

Consider the following subspaces of (V ∨
λ )r = Cλ(F)∨|y0

:

V1 := (im((A∨
1 )

−1 − 1), . . . , im((A∨
r )

−1 − 1))

and

V2 : = {(w1, w2, . . . , wr) ∈ (V ∨
λ )r |

(

r−1∑

i=1

((Ai+1 · · ·Ar)
∨)−1wi) + wr ∈ im((A∨

1 · · ·A∨
r )

−1λ− 1)}.

One can easily check that V1 ∩ V2 ≤ (V ∨
λ )r is the π1(X, y0)-submodule which

corresponds to MCλ(F)∨.
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The image of the cohomology with compact supports H1
c (X(y0),G

∨
y0
) in

H1(X(y0), G
∨
y0
) is mapped under τ ◦H isomorphically onto V1 ∩ V2. This can

be seen using similar arguments as Shimura [17], Chap. 8, or by writing αi as
the product γ̄−1

i γ̂iγ̄i (where γ̄i is a path which starts at x0 and goes near to
the singularity ti, and γ̂i moves along a small circle around ti) and using the
compact supports condition at t1, . . . , tk and ∞. The image of H1

c (X(y0),G
∨
y0
)

in H1(X(y0),G
∨
y0
) is canonically isomorphic to H1(j∗(G

∨
y0
)) (see [15], Lemma

5.3). Therefore,
MCλ(F)∨ ∼= R1(p̄2)∗(j∗(G

∨)).

Finally, the Poincaré pairing yields an isomorphism

R1(p̄2)∗(j∗(G
∨))∨ ∼= R1(p̄2)∗(j∗(G)) = R1(p̄2)∗(j∗(p

∗
1(F)⊗ q∗(Lλ)))

(see e.g. [15], Lemma 5.3). ✷

Remark 4.5 i) The resolution via singular cochains allows one to use ground
fields different from C as coefficients of cohomology. One could even work in
the category of local systems over principal ideal domains, see [20].

5 The middle convolution transformation mcµ of

Fuchsian systems

5.1 Definition of mcµ for tuples of matrices

In this section we recall the additive convolution as given in [9], App. A.

Let K be any field and a = (a1, . . . , ar), ak ∈ Kn×n. For µ ∈ K one can
define blockmatrices bk, k = 1, . . . , r, as follows:

bk :=




0 . . . 0
. . .

a1 . . . ak−1 ak + µ ak+1 . . . ar
. . .

0 . . . 0




∈ Knr×nr,

where bk is zero outside the k-th block row.

There are the following left-〈b1, . . . , br〉-invariant subspaces of the column
vector space Knr (with the tautological action of 〈b1, . . . , br〉):
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kk =




0
...
0

ker(ak)
0
...
0




(k-th entry), k = 1, . . . , r,

and
l = ∩r

k=1ker(bk) = ker(b1 + . . .+ br).

Let k := ⊕r
k=1kk.

If µ 6= 0 then

l = 〈




v
...
v


 | v ∈ ker(a1 + · · ·+ ar + µ)〉.

and
k+ l = k⊕ l.

We fix an isomorphism I between Knr/(k+ l) and Km.

Definition 5.1 We call cµ(a) := (b1, . . . , br) the (additive version of the) con-

volution of a = (a1, . . . , ar) with µ. The tuple of matrices mcµ := (b̃1, . . . , b̃r) ∈

Km×m, where b̃i is induced by the action of bi on K
m(≃ Knr/(k+ l)), is called

the (additive version of the) middle convolution of a with µ.

5.2 The definition of mcµ for Fuchsian systems and mon-

odromy of differential systems

Let T := {t1, . . . , tr}, X := C\T and c := (c1, . . . , cr), ci ∈ Ck×k. The Fuchsian
system

Y ′ =

r∑

i=1

ci
x− ti

Y

is denoted by Dc.

Definition 5.2 Let a := (a1, . . . , ar), ai ∈ Cn×n, and µ ∈ C. The Fuchsian sys-
tem Dcµ(a) (resp. Dmcµ(a)) is called the convolution (resp. middle convolution)
of Da with µ.

Let γ1, . . . , γr+1 be a homotopy base of π1(X, o), D a linear system of differ-
ential equations which has no singularities in X and F a fundamental system
of D, consisting of functions which are defined in a small neighborhood of o.
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Analytic continuation of F along γi transforms F into F ·Mon(γi). We call the
tuple

Mon(D) := (Mon(γ1), . . . ,Mon(γr))

the tuple of monodromy generators of D with respect to F and γ1, . . . , γr.

Remark 5.3 i) An element γi ∈ π1(X, o) acts (via Mon(γi)) from the right on
the vector space S spanned by the rows of the fundamental system F of D. Let
F denote the local system F formed by the solutions of D (locally at o given
by the columns of F ) and fix the isomorphism

Fo → Cn, fi(o) 7→ ek,

where fi denotes the i-th column of F and ek is the k-th standard vector of
Cn. Then the monodromy of F with respect to γ is given by the same matrix
Mon(γi) acting from the left on F0 ≃ Cn.

ii) As a factor system of Dcµ(a), the middle convolution Dmcµ(a), mcµ(a) ∈
(Cm×m)r, can be constructed by a base change, transforming a basis of k+ l to
the first nr − m standard vectors, and cutting out the m × m-block matrices
corresponding to the last m entries. The same construction applies for a funda-
mental matrix of Dcµ(a). We say that a matrix whose columns are solutions of
Dcµ(a) (not necessarily a fundamental matrix of Dcµ(a)) gives rise to a funda-
mental matrix of Dmcµ(a), if the resulting matrix under the above construction
of transforming and cutting out is a fundamental matrix of Dmcµ(a).

6 Compatibility of MCλ and mcµ

In this section we relate the additive version of the convolution to the multi-
plicative version (Subsection 6.2).

6.1 The Euler transform

A commutator
[αi, αj ] = α−1

i α−1
j αiαj

is called a Pochhammer contour. Pochhammer contours are widely used in the
theory of ordinary differential equations, see [11], [14] and [22].

Definition 6.1 Let µ ∈ C, g := (gi,j) be a matrix whose entries gi,j are (multi-
valued) functions which are holomorphic on X. The path αr+1 encircles an open
neighbourhood U of y0. The matrix valued function

Iµ[αr+1,αi]
(g)(y) :=

∫

[αr+1,αi]

g(x)(y − x)µ−1dx, y ∈ U,

is called the Euler transform of g with respect to [αr+1, αi] and µ.
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The next lemma shows that the Euler transformation is compatible with the
convolution:

Lemma 6.2 Let a := (a1, . . . , ar), ai ∈ Cn×n, and µ1, µ2 ∈ C. If g(x) is a
solution of Dcµ1

(a), then I
µ2

[αr+1,αi]
(g)(y) is a solution for Dcµ1+µ2

(a), where y is

contained in an open neighborhood of y0 which is encircled by αr+1.

Proof: In the following, we omit the subscript [αr+1, αi] at the integral sign.
For y ∈ U,

(y − T )
d(Iµ2

[αr+1,αi]
(g))

dy
= (y − T )

∫
d

dy
g(x)(y − x)µ2−1dx

=

∫
((y − x) + (x− T ))(

d

dy
g(x)(y − x)µ2−1)dx

= (µ2 − 1)Iµ2

[αr+1,αi]
(g)(y)(4)

+ (µ2 − 1)

∫
(x− T )g(x)(y − x)µ2−2dx,

where one is allowed to differentiate under the integration sign since [αr+1, αi]
is compact. One has

0 =

∫
d

dx
((x − T )g(x)(y − x)µ2−1)dx(5)

=

∫
g(x)(y − x)µ2−1dx+

∫
(x− T )g′(x)(y − x)µ2−1dx−

(µ2 − 1)

∫
(x− T )g(x)(y − x)µ2−2dx.

Therefore

(µ2 − 1)

∫
(x− T )g(x)(y − x)µ2−2dx =

∫
g(x)(y − x)µ2−1dx+

∫
(x − T )g′(x)(y − x)µ2−1dx.

Using the last equality one sees that

(5) = (µ2 − 1)Iµ2

[αr+1,αi]
(g) + Iµ2

[αr+1,αi]
(g) +

∫
(x− T )g′(x)(y − x)µ2−1dx

= (
r∑

k=1

bk)I
µ2

[αr+1,αi]
(g)(y),

where cµ1+µ2
(a) = (b1, . . . , br) (use that g is a solution of cµ1

(Da)). ✷
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Remark 6.3 The use of Pochhammer contours is an essential ingredience in
the proof of the above lemma (see Formula (5)).

In the following, F denotes a fundamental system of a Fuchsian system Da

and

G(x) :=




F (x)(x − t1)
−1

...
F (x)(x − tr)

−1


 .

The next results will be used in the proof of Theorem 6.8:

Lemma 6.4 i) The columns of G are solutions of Dc−1(a).
ii) Iµ[αr+1,αi]

(G) = Iµαi
(G)(1 − e2πiµ)− Iµαr+1

(G)(1 −Mon(αi)).

Proof: The first assertion follows from a straightforward computation. The
second assertion follows from the definition of [αr+1, αi], using the effect of the
monodromy on the integrand, see [11], Chap. 18. ✷

Corollary 6.5 i) If µ is a positive integer, then

Iµ[αr+1,αi]
(G) = 0.

ii) If µ = 0 or a negative integer, then

Iµ[αr+1,αi]
(G) =

2πi

−µ!
G(−µ)(y)(−1 +Mon(αi)).

Proof: The claims follow from the above lemma and Cauchy’s integral formula.
✷

Lemma 6.6 Let Y ′ =
∑ ai

x−ti
Y be a Fuchsian system with a nontrivial mon-

odromy group and µ 6∈ Z. Then there exits an i and a solution f(x) such that

∫

[αr+1,αi]

f(x)

x− ti
(y − x)µ−1dx 6= 0.

Proof: We can assume that we have nontrivial monodromy at t1 = 0. If the
monodromy is not unipotent then we can find an entry

g(x) = xα
∞∑

j=0

xja(j), α 6∈ Z, a(0) 6= 0

of a solution f(x) near t1. Then

Iµ[αr+1,α1]
(g) =

∞∑

j=0

a(j)

∫

[αr+1,α1]

xα+j(y − x)µ−1dx.

20



Using similar arguments as in [22], Chap. IV, one can prove that

∫

[αr+1,α1]

xα+j(y − x)µ−1dx = yα+j+µβ(α+ i, µ),

where β(α+ i, µ) 6= 0, if α+ i, µ 6∈ Z.
In the case of nontrivial unipotent monodromy at t1 = 0, there exists a

solution which has an entry g(x) = h0(x)+ log(x)h1(x) near 0, where h0, h1 are
meromorphic at 0 and h1 6= 0 (see [11], 16.3). The claim follows now from an
easy exercise, using integration by parts, Lemma 6.4 and Corollary 6.5. ✷

6.2 The Riemann-Hilbert correspondence for MCλ

In the notation of the preceding sections. Let a := (a1, . . . , ar), ai ∈ Cn×n. Let
F be a fundamental matrix of the Fuchsian system Da : Y ′ =

∑ ai

x−ti
Y and

G(x) :=




F (x)(x − t1)
−1

...
F (x)(x − tr)

−1


 .

Definition 6.7 Let µ ∈ C. The matrix

Iµ := Iµ(y) := (Iµ[αr+1,α1]
(G)(y), . . . , Iµ[αr+1,αr]

(G)(y))

is called the period matrix.

Remark: It follows from the definitions that if the period matrix Iµ is invert-
ible, then it describes the pairing betweenH1(X(y0),Gy0

) andH1
DR(X(y0),G

∨
y0
),

where X(y0) and G are as in the proof of Theorem 4.4. In the next theorem we
will give criteria for Iµ to be invertible, i.e., the rows of Iµ(y0) exhibit a base of
H1

DR(X(y0),G
∨
y0
).

In a similar way as described in Yoshida [22], Chap. iv, it can be shown
that the matrix H which occurs in Lemma 2.5 has a natural interpretation as
an intersection matrix of (“loaded”) cycles c ∈ H1(X(y0),Gy0

).

The next theorem shows the relation between the additive and multiplicative
versions of the convolution:

Theorem 6.8 Let a := (a1, . . . , ar), ai ∈ Cn×n, Mon(Da) = (A1, . . . , Ar) ∈
GLn(C)

r its tuple of monodromy generators, µ ∈ C \ Z and λ := e2πiµ. If the
generated subgroup 〈A1, . . . , Ar〉 is an irreducible subgroup of GLn(C) and if at
least two elements of A1, . . . , Ar are 6= 1, then the following statements hold:

i) The columns of the period matrix Iµ(y) are solutions of Dcµ−1(a), where
y is contained in a small open neighbourhood U of y0.
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ii) For vi ∈ ker(Ai − 1), i = 1, . . . , r, (resp. v ∈ ker(A1 · · ·Arλ− 1)) assume
that the residues of G(x)vi at ti (resp. the residues of xµ−1G(x)v at ∞) is
not identically zero. Then the period matrix Iµ(y), y ∈ U, is a fundamental
matrix of Dcµ−1(a). Further, the tuple of monodromy generators of Dcµ−1(a)

with respect to Iµ(y) and the paths β1, . . . , βr is Cλ(Mon(Da)), i.e.,

Mon(Dcµ−1(a)) = Cλ(Mon(Da)).

iii) Assume that

rk(ai) = rk(Ai − 1) and rk(a1 + · · ·+ ar + µ) = rk(λ ·A1 · · ·Ar − 1).

The matrix Iµ(y) gives rise to a fundamental matrix Ĩµ(y), y ∈ U, of the sys-
tem Dmcµ−1(a) (see Remark 5.3, ii)). The tuple of monodromy generators of

Dmcµ−1(a) with respect to Ĩµ(y) and the paths β1, . . . , βr is MCλ(Mon(Da)),
i.e.,

Mon(Dmcµ−1(a)) =MCλ(Mon(Da)).

Remark 6.9 a) It follows from the proof that one can weaken the assumptions
of Theorem 6.8 such that tuple (A1, . . . , Ar) fulfills the conditions (∗) and (∗∗)
of Subsection 2.2 instead of the irreducibility and non-triviality condition on
A1, . . . , Ar.

b) In Theorem 6.8, iii), if rk(ai) > rk(Ai − 1) then the differential system,
which corresponds to (the local system corresponding to) MCλ(A1, . . . , Ar) is
a factor system of Dmcµ−1(a).

Proof of i): This follows from Lemma 6.2 and Lemma 6.4 i). ✷

Proof of ii): Let Vλ denote the π1(X\{y0}, x0)-module whose underlying vector
space is the column vector space Cn on which αi acts via Ai (1 ≤ i ≤ r) and
αr+1 acts via λ. Let Cn denote the space of row vectors and V ∨

λ the dual module
of Vλ with respect to Cn ×Cn → C, (w, v) 7→ w · v. Let F j denote the j-th row
of F and

δi,j : π1(X \ {y0}, x0) → V ∨
λ , γ 7→

∫

γ

F j(y0 − x)µ−1 dx

x− ti
.

By the properties of the integral, δi,j is an element in C1(π1(X \ {y0}, x0), V
∨
λ ).

It follows that the rows of Iµ(y0) are exactly the images of the crossed homo-
morphisms δi,j under the twisted evaluation map. By the definition of Iµ[αr+1,αi]

,

analytic continuation of Iµ(y) along the path βk transforms Iµ[αr+1,αi]
(G) into

Iµ
[βkαr+1,βkαi]

(G). It follows then from Theorem 3.3 (Formula (2)), that the ma-

trix which describes this transformation is the matrix Bk, where

Cλ(A1, . . . , Ar) = (B1, . . . , Br).

In order to prove ii), it remains to prove that the columns of Iµ(y) form a
fundamental set of solutions. This follows from the Lemmata below:
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Consider the vector space of solutions J := Iµ(y) · Cnr, with y in a small
neighborhood of y0. Let further Ki, K and L be as in Subsection 2.1 and K̂i :=
Iµ(y) · Ki, K̂ := Iµ(y) · K and L̂ := Iµ(y) · L.

Lemma 6.10 The kernel of the map

Iµ : Cnr → J, (v1, . . . , vr)
tr → Iµ(y) · (v1, . . . , vr)

tr

is a 〈Bk : k = 1, . . . , r〉-module.

Proof: If Iµv = 0, then IµBkv = 0. ✷

If G = (gi,j(t)) is a vector valued function which is componentwise mero-
morphic a tk, then Restk(G) denotes the vector of residues (Restk(gi,j(t))).

Lemma 6.11 Let µ 6∈ Z. Then the functions in K̂i (resp. L̂) have at most a
singularity at ti (resp. ∞). Moreover,

i)
K̂i = 〈Resti(G(x)v)(y − ti)

µ−1 | v ∈ ker(Ai − 1)〉

for i = 1, . . . , r.
ii)

L̂ = 〈Res∞(xµ−1G(x)v) | v ∈ ker(A1 · · ·Arλ− 1)〉

Proof: i) One has

K̂i = IµKi = Iµ[αr+1,αi]
(G(x)) ker(Ai − 1)

= Iµαi
(G(x)) ker(Ai − 1)

by Lemma 6.4. The claim follows from Cauchy’s integral formula since G(x)v
(as matrix valued function in x) is meromorphic at ti for v ∈ ker(Ai − 1).

ii) Using Lemma 6.4 one easily sees that

L̂ = Iµ[αr+1,α∞](G(x)) ker(A1 · · ·Arλ− 1),

where α∞ = α1 · · ·αr+1. Using the same arguments as in i) the claim follows.
✷

Corollary 6.12 One has

K̂ + L̂ = ⊕iK̂i ⊕ L̂

as a left-〈B1, . . . , Br〉-module.

Lemma 6.13 If the conditions (∗) and (∗∗) of Subsection 2.2 hold forMon(Da) =
(A1, . . . , Ar), then

ker(Iµ) ≤ K + L.
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Proof: Assume that ker(Iµ) 6≤ K + L. Let O ≤ V1 ≤ . . . ≤ Vk = Vλ be a
composition series of Vλ (as a module). Let further V r

i be the corresponding
(diagonal) subspace of V r

λ = Cnr and Ṽi := V r
i +K+ L mod K + L. It follows

from Theorem 2.4, iii), and [9], Lemma 2.8, that O ≤ Ṽ1 ≤ . . . ≤ Ṽk = V r
λ /(K+

L) is a composition series of V r
λ /(K+L) (as 〈B1, . . . , Br〉-module). Since ker(Iµ)

is a 〈B1, . . . , Br〉-module, there exists a 〈A1, . . . , Ar〉-module W ≤ Vλ such that
W r +K + L ≤ ker(Iµ) +K+ L. We assume that W is minimal and nontrivial.
By minimality, (∗) and (∗∗) also hold for W, see [9], proof of Corollary 3.6.

Property (∗∗) for W implies that

Iµ(y)(Bi − 1)W r = Iµ(y)




0
...
W
...
0




( i-th entry).(6)

By assumption on W, one has

Iµ(y)




w1

...
wr


 = (

r∑

k=1

gk) + g∞,

where w1, . . . , wr ∈ W and gi ∈ K̂i (resp. g∞ ∈ L̂), by Lemma 6.11. Using the
monodromy around ti we get

Iµ(y)Bi




w1

...
wr


 = (

∑

k 6=i

gk) + g∞ + λgi.

Subtracting theses equalities one obtains Iµ(y)(Bi − 1)W r ≤ K̂i and (together
with Equation (6))

Iµ(y)(Bi − 1)W r = Iµ(y)




0
...
W
...
0




≤ K̂i.

Using the description of K̂i in terms of functions, one sees that for j =
1, . . . , r, j 6= i,

Iµ(y)(Bj − 1)




0
...
W
...
0




= Iµ(y)




0
...

(Ai − 1)W
...
0




= 0,

24



where the expression on the right hand side of the first equality is zero outside
the j-th block entry. Similarly one obtains

Iµ(y)(Bi − λ)




0
...
W
...
0




= Iµ(y)




0
...

(Ai − 1)W
...
0




= 0.

Since (∗∗) holds for W, a block-wise argument shows that

W r ≤ ker(Iµ).(7)

On the other hand, since ∩r
i=1 ker(Ai|W − 1) = 0 (Property (∗)), we can find

an i ∈ {1, . . . , r} and a solution f in F ·W (where F is a fundamental system
of Da), such that f has nontrivial monodromy at ti. The Euler transform

g := Iµ[αr+1,αi]
((

f

x− t1
, . . . ,

f

x− tr
)tr)

is a solution of Dcµ−1(a). Lemma 6.6 implies then that g is not identically zero.
This gives a contradiction to Equation (7), so W = 0 and the claim follows. ✷

Finish of the proof of ii): It follows from the assumptions on the residues and
Lemmata 6.11 and 6.12 that dim(K̂) = dim(K) and dim(L̂) = dim(L). It follows
then from Lemma 6.13 that the columns of Iµ(y) are linearly independent. ✷

Proof of iii): This follows from dimension reasons (using the rank-conditions)
and Lemma 6.13. ✷

7 Applications of the convolution functors MCλ

and mcµ

7.1 Rigid local systems and Fuchsian systems

In this subsection we want to outline a construction algorithm for Fuchsian sys-
tems corresponding to irreducible rigid local systems under the Riemann-Hilbert
correspondence.

For Ω = (ω1, . . . , ωr) ∈ (K×)r, the scalar multiplication with Ω

GLn(K)r → GLn(K)r, (A1, . . . , Ar) 7→ (ω1A1, . . . , ωrAr)

is denoted byMΩ. The corresponding effect on local systems on the r-punctured
affine line is also denoted byMΩ. Similarly, for ∆ = (δ1, . . . , δr) ∈ Kr, the scalar
addition with ∆

(Kn×n)r → (Kn×n)r, (a1, . . . , ar) 7→ (a1 + δ1 · 1, . . . , ar + δr · 1)
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is denoted by m∆. The corresponding effect on Fuchsian systems is also denoted
by m∆.

Let F be a complex irreducible (physically) rigid local system. By the results
of [12], Chap. 6, and [9], Chap. 4, one can construct F by applying iteratively
a suitable sequence of scalar multiplications MΩi (see [9], Chap. 4) and middle
convolutions MCλj

to a one-dimensional local system F0.

It is easy to write down a Fuchsian system

D
a
0 : Y ′ = (

a01
x− t1

+ · · ·+
a0r

x− tr
)Y, a0i ∈ C,

whose solutions form the local system F0. This system is irreducible and rigid,
and we (can) assume that it fulfills the assumptions of Theorem 6.8 iii) (i.e.,
if a0i ∈ Z then a0i = 0, and there exist at least two elements a0i1 , a

0
i2

such that
a0i1 , a

0
i2
/∈ Z). It follows now from Theorem 6.8 iii) that there exists a sequence

of scalar additions

m∆i, ∆i = (δi1, . . . , δ
i
r), such that (e2πiδ

i
1 , . . . , e2πiδ

i
r ) = Ωi,

and middle convolutions
mcµj

, e2πiµj = λj ,

such that the iterative application of this sequence to D
a
0 yields an irreducible

Fuchsian system D whose monodromy coincides with the monodromy of F . The
only thing one has to take care of, is to choose the scalar additions (modulo Z)
that the rank condition of Theorem 6.8 iii) is fulfilled. This is possible in every
step by the following argument:

It is shown in [9], Chap. 4, resp. Appendix A, that, in the irreducible case,
the index of rigidity is preserved byMCλ, resp. mcµ (which is equal to 2 in both,
the additive and the multiplicative, cases). By the compatibility between MCλ

and mcµ (dimension reasons), one can see that if two eigenvalues of a matrix
which occurs as a component in one step of the above “additive” construction
differ by an element of Z, then they correspond to a certain Jordan block of
length > 1 in a matrix which occurs in the “multiplicative” construction, in a
way that the rank condition of Theorem 6.8 iii) is fulfilled.

By the construction of mcµ, it clear that everything can be done in an algo-
rithmic way and is easily implemented on the computer. Moreover, one obtains
the sections of the local system F in a concrete way as iterated integrals, com-
pare to [10] and [21].

Remark: By Crawley-Boevey’s solution of the additive Deligne-Simpson prob-
lem (see [7]) the rigid tuples of complex matrices having sum ≡ 0 are known and,
by the additive Katz’ existence algorithm (see [9], Appendix A), these tuples
can be constructed similar to the above construction.

But in general, it is a difficult problem to decide when the associated Fuch-
sian system is irreducible, i.e., the associated local system of solutions is an
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irreducible rigid local system. The point is, that in the above construction, the
irreduciblity is ensured by Theorem 6.8 iii), using the fact that (under the given
assumptions) the functors MCλj

preserve irreduciblity, see Theorem 2.4, iii).

7.2 Geometric differential equations

Let X be a smooth and geometrically connected algebraic variety over an alge-
braically closed field K ⊆ C, f : Y → X a smooth projective morphism and d
the universal differential Y → Ω1

Y . The Gauß-Manin connection on relative de
Rham cohomology groups Hi

DR(Y/X) := RifDR
∗ (OY , d) gives rise to a system

of differential equations (see [1] for details). A differential system is said to be
arising from geometry if it is equivalent to an iterated extension of subfactors
of such differential systems (see [1], Chap. II).

Theorem 7.1 Let K be a number field, a = (a1, . . . , ar), ai ∈ Kn×n, µ ∈ Q,
such that the conditions of Theorem 6.8 hold for Da. If Da is arising from
geometry, then Dcµ(a) (resp. Dmcµ(a)) is arising from geometry.

Proof: The claim follows from the construction of the period matrix and the
result of André [1], saying that the category of differential modules which arise
from geometry is closed under taking higher direct images. ✷

Let us consider an example:

Lemma 7.2 Let

p(x) = 4(x− t1)(x − t2)(x− t3) = 4x3 − g2x− g3,

B ∈ C and

Ln := Ln(p,B) := p(x)y′′ +
1

2
p′(x)y′ − (n(n+ 1)x+B)y

the Lamé differential equation of index n ∈ Q. Then, Ln can be transformed
into the Fuchsian system

Y ′ =

3∑

i=1

ai
x− ti

Y

:=

(
1

x− t1

(
0 1
0 1

2

)
+

1

x− t2

(
0 0
l1 − 1

2

)
+

1

x− t3

(
0 0
l2 − 1

2

))
Y,

where

l1 =
t2n(n+ 1) + B

4(t2 − t3)
and l1 + l2 =

n(n+ 1)

4
.
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Proof: The differential system which corresponds to Ln is

Y ′ =

(
0 1

n(n+1)x+B
p(x) − 1

2
p′(x)
p(x)

)
Y.

Using the gauge transformation Y 7→

(
1 0
0 x− t1

)
Y we get the equivalent

system

Y ′ =

(
1

x− t1

(
0 1
0 1

2

)
+

(
0 0

n(n+1)x+B
4(x−t2)(x−t3)

− 1
2

∑3
i=2

1
x−ti

))
Y.

Since

n(n+ 1)x+B

4(x− t2)(x − t3)
=

t2n(n+ 1) +B

4(x− t2)(t2 − t3)
−

t3n(n+ 1) +B

4(x− t3)(t2 − t3)
,

the claim follows. ✷

Definition 7.3 We say that a system of differential equations D is in Okubo
normal form, if

D : Y ′ = (x− T )−1bY or, equivalently, D : (x− T )Y ′ = bY,

where b ∈ Cn×n and T is a diagonal matrix T = diag(t1, . . . , tn), ti ∈ C (here
possibly ti = tj for i 6= j).

Lemma 7.4 Let r ≥ 3, µ ∈ C \ Z and a := (a1, . . . , ar), ai ∈ C2×2, where
a1, a2, a3 are as in the previous lemma. If rk(ai) = 2 for i > 3, and if −µ is no
eigenvalue of a1+ · · ·+ar, then Dmcµ(a) is equivalent to the following differential
system in Okubo form:

D(Ln, a, µ) : (x− T )Y ′ = (c̃+ µ)Y

where T = diag(t1, t2, t3, t4, t4, . . . , tr, tr) and

c̃ =




1
2 − 1

2 − 1
2 (0, 1)a4 (0, 1)ar

−2l1 +
1
2 − 1

2 − 1
2

(−2l1, 1)a4 . . . (−2l1, 1)ar
−2l2 +

1
2 − 1

2 − 1
2

(−2l2, 1)a4 (−2l2, 1)ar

1
1
2

0
− 1

2

0
− 1

2

a4 . . . ar

...
...

...
...

...

1
1
2

0
− 1

2

0
− 1

2

a4 . . . ar
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Proof: In the notation of Subsection 5.1. Let c0(a) = (b1, . . . , br), where bi ∈
C2r×2r. One has Dcµ(a) : Y

′ = (x − T )−1(b + µ)Y, where b := b1 + . . .+ br.
Let

B1 :=

(
1 −2
0 1

)
, B2 :=

(
1 0

−2l1 1

)
, B3 :=

(
1 0

−2l2 1

)
.

Then

B1a1B
−1
1 =

(
0 0
0 1

2

)
and B2a2B

−1
2 = B3a3B

−1
3 =

(
0 0
0 − 1

2

)
.

Consider the block-diagonalmatrix d := diag(B1, B2, B3, E2, . . . , E2). One com-
putes that

dbd−1 =




B1a1B
−1
1 B1a2B

−1
2 B1a3B

−1
3 B1a4 . . . B1ar

B2a1B
−1
1 B2a2B

−1
2 B2a3B

−1
3 B2a4 . . . B2ar

B3a1B
−1
1 B3a2B

−1
2 B3a3B

−1
3 B3a4 . . . B3ar

a1B
−1
1 a2B

−1
2 a3B

−1
3 a4 . . . ar

...
...

...
...

a1B
−1
1 a2B

−1
2 a3B

−1
3 a4 . . . ar




It is easily checked that conjugating b with d gives an equivalence betweenDcµ(a)

and Y ′ = (x− T )−1(c+ µ)Y with c = dbd−1.
Under the assumptions, the space l ≤ C2r is zero. Since BiaiB

−1
i is diagonal,

factoring out the space k corresponds to canceling the first, third and fifth row
and column of c. This yields c̃. ✷

Baldassarri [4] gives examples of Lamé equations with finite monodromy.
E.g., it is shown that the monodromy group of Ln(p(x), B), (n = 1, p(x) =
4x3 + g3, B = 0), is the symmetric group on 3 letters. Beukers and van der
Waall [5] list all finite groups which can occur as the monodromy groups of Lamé
equations and they give many examples of such equations. Also, van der Waall
[18] gives an algorithm to detect all Lamé equations with finite monodromy
group. One equation which can be found in [5], Table 4, is given by Ln(p(x), B)
(n = 1/6, p(x) = 4x3 − x, B = 0), whose monodromy group is isomorphic to
the complex reflection group G13.

This yields a new family of differential systems arising from geometry:

Corollary 7.5 Under the assumptions of Lemma 7.4. Let Ln(p,B) a Lamé
equation which has finite monodromy (e.g., if n = 1, p(x) = 4x3 + g3, B = 0, or
n = 1/6, p(x) = 4x3 − x, B = 0), a4, . . . , ar scalar matrices contained in Q2×2

and µ ∈ Q. Then the following holds:

i) The differential system D(Ln(p,B), a, µ) is arising from geometry.

ii) The solutions of D(Ln(p,B), a, µ) are G-functions.

Proof: This follows from Theorem 7.1 and [1], Chap. V. ✷
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7.3 Transformation of the p-curvature under mcµ

In this section, we want to study how the p-curvature changes under the convo-
lution:

Let K be a number field and D : Y ′ = aY, where a = (ai,j) ∈ K(x)n×n.
Successive application of differentiation yields differential systems

D(n) : Y (n) = â(n)Y.

In the following, p always denotes a prime of K which lies over p. For almost

all primes p, one can reduce â(p) modulo p, in order to obtain the p-curvature
matrices

a(p) := â(p) mod p.

The p-curvature matrices encode many arithmetic properties of the differential
system D and are conjecturally related to questions about the geometric nature
of D :

Conjecture 7.6 i) (Grothendieck-Katz, see [13], [2]) The Lie algebra of the
differential Galois group of D is minimal to the property that, for almost all
primes p of K, its reduction modulo p contains the p-curvature matrix a(p).

ii) (Bombieri-Dwork, see [1]) If D is globally nilpotent, i.e., a(p) is nilpotent
for almost all primes p, then D is arising from geometry.

Remark: (i) The Grothendieck-Katz conjecture implies the p-curvature con-
jecture of Grothendieck: If a(p) = 0 for almost all p, then D has a fundamental
set of solutions consisting of algebraic functions.

(ii) It is well known that if D has a fundamental set of solutions consisting
of algebraic functions, then a(p) = 0 for almost all p. Also, if D is arising from
geometry, then a(p) is nilpotent for almost all p.

Remark 7.7 (Okubo) Let D : (x − T )Y ′ = bY be a system of differential
equations in Okubo normal form. Then, (x − T )Y (2) = (b − 1)Y ′.

An induction yields the following recursion formula for the p-curvature ma-
trix of a system of differential equations in Okubo normal:

Lemma 7.8 Let D : (x − T )Y ′ = bY be a system of differential equations in
Okubo normal form. Then

â(n) = (x−T )−1(b−n+1) · (x−T )−1(b−n+2) · · · (x−T )−1(b−1) · (x−T )−1b.

Theorem 7.9 Let a = (a1, . . . , ar), ai ∈ Kn×n, such that

a(p)k = 0.
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Let µ ∈ Q and denote by cµ(a(p)) (resp. mcµ(a(p))) the p-curvature matrix of
Dcµ(a) (resp. Dmcµ(a)).

i) If µ = −1, then cµ(a(p))
k+1 = 0 and mcµ(a(p))

k+1 = 0.

ii) If µ = n1

n2
and p does not divide n1n2, then

cµ−1(a(p))
k+2 = 0 and mcµ−1(a(p))

k+2 = 0.

Proof: The convolution of Da is a differential system in Okubo normal form:

Dcµ(a) : Y
′ =

r∑

k=1

bk
x− tk

Y = (x− T )−1(

r∑

k=1

bk)Y,

where T is the diagonal matrix T = diag(t1, . . . , t1, . . . , tr, . . . , tr) (every tk
occurs n times) and bk is as in Section 5.1. If µ = −1 then (

∑r
k=1 bk) is a

blockmatrix b = (bi,j) with bi,j = aj − δi,jEn.
Using the gauge transformations with (x− T ) and

H :=




En −En 0 . . .

0
. . .

. . .
... −En

0 . . . En




one sees that Dc−1(a) is equivalent to the following system:

Y ′ =




0 . . . . . . 0
...

...
0 . . . . . . 0
a1

x−t1
( a1

x−t1
+ a2

x−t2
) . . . ( a1

x−t1
+ · · ·+ ar

x−tr
)


Y.

Thus c−1(a(p)) is equivalent to




0 . . . . . . 0
...

...
0 . . . . . . 0
∗ ∗ ∗ a(p)


 .

It follows from a(p)k = 0 that c−1(a(p))
k+1 = 0 and i) follows.

Let µ̂ ∈ N+ be the smallest natural number such that µ̂ ≡ µ mod p and
b∞ := b1 + · · ·+ br − µ, where cµ(a) = (b1, . . . , br). Let further

h1 := (x− T )−1b∞ · (x − T )−1(b∞ + 1) · · · (x− T )−1(b∞ − 1 + µ̂)

and

h2 := (x− T )−1(b∞ + µ̂) · (x− T )−1(b∞ + µ̂+ 1) · · · (x − T )−1(b∞ − 1 + p).
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Then cµ−1(a(p)) = h2h1 mod p and c−1(a(p)) = (h1h2 mod p) by the above
recursion formula (Lemma 7.8). It follows from

c−1(a(p))
k+1 = ((h1h2)

k+1 mod p) = 0,

that
cµ−1(a(p))

k+2 = ((h2h1)
k+2 mod p) = 0,

giving ii). ✷

Corollary 7.10 Let a = (a1, . . . , ar), ai ∈ Kn×n, such that Da is a globally
nilpotent and µ ∈ Q. Then Dcµ(a) (resp. Dmcµ(a)) is globally nilpotent.

Lemma 7.11 Let D(Ln(p(x), B), a, µ) be as in Corollary 7.5.

i) The Grothendieck-Katz conjecture is true for D(Ln, a, µ).

ii) The system D(Ln, a, µ) is globally nilpotent of rank 3.

Proof: i) In the notation of Section 4. Let G be the monodromy group of Da.
Let X = C \T (remember that t1, t2, t3 are determined by Ln), X1 → X be the
unramified cover of X which is associated to the homomorphism π1(X) → G ≤
GL2(C) andX2 the cyclic cover of C

× which is associated to π1(C
×) → C×, γ 7→

e2πiµ. Let Y1 := X1×XE, Y2 := X2×C×E and Ỹ := Y1×E Y2. By construction,
Ỹ is an unramified cover of E and admits, via p2, a map f̃ : Ỹ → X. Let
Y denote the compactification of Ỹ with respect to the first coordinate and
f : Y → X the morphism induced by f̃ . It follows from Riemann’s existence
theorem that f arises from an underlying smooth map of varieties (i.e., f is

the effect on the complex points), denoted by f̂ : Ŷ → X̂, where X̂ and Ŷ are
smooth connected varieties over some number field K. It follows from the Leray
spectral sequence that Dmcµ(a) is a differential system which is equivalent to a

subfactor of the Gauß-Manin connection ∇ : H1
DR(Ŷ /X̂) → Ω1

X̂
⊗H1

DR(Ŷ /X̂).

By [3], Theorem 0.7.1, the claim follows from the connectivity of the motivic
Galois group of at least one fibre Ŷs (which is a nonsingular curve in our case),
where s is a geometric point of X̂. But this follows analogously to [3], Ex. 16.3,
from the results of [2], relating the motivic Galois group of Ŷs to the Mumford-
Tate group of the Jacobian of Ŷs.

The claim ii) follows from Theorem 7.9, ii). ✷

References
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